Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 356: 120618, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508005

RESUMEN

Plastics introduced into the natural environment persist, degrade, and fragment into smaller particles due to various environmental factors. Microplastics (MPs) (ranging from 1 µm to 5 mm) and nanoplastics (NPs) (less than 1 µm) have emerged as pollutants posing a significant threat to all life forms on Earth. Easily ingested by living organisms, they lead to ongoing bioaccumulation and biomagnification. This review summarizes existing studies on the sources of MPs and NPs in various environments, highlighting their widespread presence in air, water, and soil. It primarily focuses on the sources, fate, degradation, fragmentation, transport, and ecotoxicity of MPs and NPs. The aim is to elucidate their harmful effects on marine organisms, soil biota, plants, mammals, and humans, thereby enhancing the understanding of the complex impacts of plastic particles on the environment. Additionally, this review highlights remediation technologies and global legislative and institutional measures for managing waste associated with MPs and NPs. It also shows that effectively combating plastic pollution requires the synergization of diverse management, monitoring strategies, and regulatory measures into a comprehensive policy framework.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos , Plásticos , Contaminación Ambiental , Suelo , Contaminantes Químicos del Agua/análisis , Mamíferos/metabolismo
2.
Protoplasma ; 261(1): 125-142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37550558

RESUMEN

Quercetin is a bioactive natural compound with an antioxidative property that can potentially modify plant physiology. The current investigation aimed to gauge the effect of different concentrations of foliar spray of quercetin (0, 0.5, 1, 1.5, 2.0 mM) on several morphological and physio-biochemical performances of Abelmoschus esculentus L. (Moench.) plants under normal environmental conditions. The foliar spray on the plant leaves was applied 25 days after sowing (DAS) and continued up to 30 DAS once each day. The plants were sampled at 30 and 45 DAS to monitor several parameters. The foliar treatments of quercetin significantly upgraded all the studied parameters. The results direct that most of the traits such as growth, nutrient uptake, photosynthetic, and enzyme activities were promoted in a dose-dependent way. Quercetin application lowered the reactive oxygen species (ROS) buildup by increasing the antioxidant enzyme activities. Microscopic investigations further revealed a significant enhancement in the stomatal aperture under quercetin application. Out of several doses tested, 1 mM of quercetin proved best and can be used for further investigations.


Asunto(s)
Abelmoschus , Quercetina , Quercetina/farmacología , Quercetina/metabolismo , Abelmoschus/química , Abelmoschus/metabolismo , Antioxidantes/metabolismo , Azúcares/metabolismo , Oxidación-Reducción
3.
Plant Physiol Biochem ; 203: 108047, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37748371

RESUMEN

Salicylic acid (SA) is a well-known signaling molecule and phenolic plant hormone. However, the optimal concentration of SA required for beneficial effects may vary across different plant species. The objective of this study was to investigate the effects of salicylic acid (SA) on two different varieties of Abelmoschus esculentus (Sakata-713 and Neelam) in order to determine the optimal concentration of SA and its impact on the growth, physiology, and biochemical processes of the plants. We conducted an experiment applying different SA concentrations (0, 10-4, 10-5, 10-6, 10-7 M) at 25 days after sowing (DAS) and evaluated various plant parameters at different stages. To evaluate various parameters sampling was performed at 30 and 45 DAS; yield traits were calculated at 60 DAS. The results indicate that SA application increased cell division, trichome number, chlorophyll content, photosynthesis, gas exchange traits, and elemental status which further boosted plants growth and yield traits. SA application stimulated activity of several enzymes that participate in carboxylation/decarboxylation homeostasis (carbonic anhydrase), nitrogen metabolism (nitrate reductase), Calvin cycle (Rubisco), TCA cycle (succinate dehydrogenase and fumarase) and secondary metabolism (phenylalanine lyase). A gradual increase in the production of secondary metabolites (total phenol, total flavonoid, anthocyanin) and carbon metabolism (total reducing sugars, starch, glucose, fructose, sucrose) was observed. Notably, SA treatment also played a vital role in maintaining a balanced equilibrium between reactive oxygen species (ROS) and the scavenging system (catalase, peroxidase, superoxide dismutase). Based on our results, the optimal concentration of SA was determined to be 10-5 M, as it yielded the most favourable outcomes among the different concentrations tested. Moreover, when comparing the two varieties of okra, Sakata-713 exhibited a more promising response to SA treatment compared to Neelam.

4.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955797

RESUMEN

Phytoecdysteroids (PEs) are naturally occurring polyhydroxylated compounds with a structure similar to that of insect molting hormone and the plant hormone brassinosteroids. PEs have a four-ringed skeleton composed of 27, 28, 29, or 30 carbon atoms (derived from plant sterols). The carbon skeleton of ecdysteroid is known as cyclopentanoperhydrophenanthrene and has a ß-sidechain on C-17. Plants produce PEs via the mevalonate pathway with the help of the precursor acetyl-CoA. PEs are found in algae, fungi, ferns, gymnosperms, and angiosperms; more than 500 different PEs are found in over 100 terrestrial plants. 20-hydroxyecdysone is the most common PE. PEs exhibit versatile biological roles in plants, invertebrates, and mammals. These compounds contribute to mitigating biotic and abiotic stresses. In plants, PEs play a potent role in enhancing tolerance against insects and nematodes via their allelochemical activity, which increases plant biological and metabolic responses. PEs promote enzymatic and non-enzymatic antioxidant defense systems, which decrease reactive oxygen species in the form of superoxide radicals and hydroxyl radicals and reduce malondialdehyde content. PEs also induce protein biosynthesis and modulate carbohydrate and lipid synthesis. In humans, PEs display biological, pharmacological, and medicinal properties, such as anti-diabetic, antioxidant, anti-microbial, hepatoprotective, hypoglycemic, anti-cancer, anti-inflammatory, antidepressant, and tissue differentiation activity.


Asunto(s)
Hormonas de Insectos , Reguladores del Crecimiento de las Plantas , Animales , Antioxidantes/metabolismo , Carbono/metabolismo , Humanos , Hormonas de Insectos/metabolismo , Insectos/metabolismo , Mamíferos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Estrés Fisiológico
5.
Plants (Basel) ; 11(7)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35406959

RESUMEN

Lipoxygenases (LOXs), naturally occurring enzymes, are widely distributed in plants and animals. LOXs can be non-sulfur iron, non-heme iron, or manganese-containing dioxygenase redox enzymes. LOXs catalyze the oxidation of polyunsaturated fatty acids into fatty acid hydroperoxides. Linolenic acid, a precursor in the jasmonic acid (JA) biosynthesis, is converted to 12-oxo-phytodienoic acid through oxygenation with LOX, allene oxide synthase, and allene oxide cyclase. Moreover, JA participates in seed germination, fruit ripening, senescence, and many other physio-biochemical processes. LOXs also play crucial roles in defense responses against biotic stress, i.e., insects, pests, pathogenic attacks, and abiotic stress, such as wounding, UV-rays, extreme temperature, oxidative stress, and drought.

6.
Plants (Basel) ; 10(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203173

RESUMEN

Phytocannabinoids are a structurally diverse class of bioactive naturally occurring compounds found in angiosperms, fungi, and liverworts and produced in several plant organs such as the flower and glandular trichrome of Cannabis sativa, the scales in Rhododendron, and oil bodies of liverworts such as Radula species; they show a diverse role in humans and plants. Moreover, phytocannabinoids are prenylated polyketides, i.e., terpenophenolics, which are derived from isoprenoid and fatty acid precursors. Additionally, targeted productions of active phytocannabinoids have beneficial properties via the genes involved and their expression in a heterologous host. Bioactive compounds show a remarkable non-hallucinogenic biological property that is determined by the variable nature of the side chain and prenyl group defined by the enzymes involved in their biosynthesis. Phytocannabinoids possess therapeutic, antibacterial, and antimicrobial properties; thus, they are used in treating several human diseases. This review gives the latest knowledge on their role in the amelioration of abiotic (heat, cold, and radiation) stress in plants. It also aims to provide synthetic and biotechnological approaches based on combinatorial biochemical and protein engineering to synthesize phytocannabinoids with enhanced properties.

7.
Plant Physiol Biochem ; 166: 278-289, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34146783

RESUMEN

Silicon (Si) is the second most abundant element present on the lithosphere and a quasi-essential element for plants' cellular and developmental processes. Si is associated with augmented germination, growth, photosynthesis, gas exchange, photosystem efficiency, and yield attributes in unstressed and stressed plants. The exogenous application of Si facilitates morpho-physiological and biochemical traits. It triggers the content of compatible osmolyte and enzymatic and non-enzymatic antioxidants, which decreases reactive oxygen species like hydrogen peroxide and superoxide. Uptake and transport of Si in plants are discussed in this review. Furthermore, the potent roles of Si in plants are emphasized. The cross-talk of Si with phytohormones such as auxins, cytokinins, gibberellins, abscisic acid, brassinosteroids, salicylic acid, nitric oxide, jasmonic acid, and ethylene is also presented. Moreover, attempts have been made to cover the contribution of Si mediated enhancement in 'omics' (genomic, transcriptomic, proteomic, metabolomic, and ionomic) approach that is useful in diminishing stress. This review aims to provide Si integration with phytohormone and utilization of 'omic approaches' to understand the role of Si in plants. This review also underlines the need for future research to evaluate the role of Si during abiotic stress in plants and the identification of gaps in understanding this process as a whole at a broader level.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Silicio , Plantas , Proteómica , Silicio/farmacología , Estrés Fisiológico
8.
Plant Physiol Biochem ; 166: 10-19, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34087741

RESUMEN

Flavonoids are a special category of hydroxylated phenolic compounds having an aromatic ring structure. Quercetin is aspecial subclass of flavonoid. It is a bioactive natural compound built upon the flavon structure nC6(ring A)-C3(ring C)-C6(ring B). Quercetin facilitates several plant physiological processes, such as seed germination, pollen growth, antioxidant machinery, and photosynthesis, as well as induces proper plant growth and development. Quercetin is a powerful antioxidant, so it potently provides plant tolerance against several biotic and abiotic stresses. This review highlights quercetin's role in increasing several physiological and biochemical processes under stress and non-stress environments. Additionally, this review briefly assesses quercetin's role in mitigating biotic and abiotic stresses (e.g., salt, heavy metal, and UV stress). The biosynthesis of flavonoids, their signaling pathways, and quercetin's role in plant signaling are also discussed.


Asunto(s)
Plantas , Quercetina , Flavonoides , Desarrollo de la Planta , Estrés Fisiológico
9.
Ecotoxicol Environ Saf ; 213: 112020, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33592373

RESUMEN

The contribution of nanoparticles (NPs) in physiology of the plants became the new area of interest for the physiologists; as it is very much cost effective compared to the phytohormones. Our present investigation was also based on this interest in which the same doses (50 mg/L) of four different NPs were sprayed on stressed and non-stressed foliage. The experiment was conducted to assess the impact of four NPs viz., zinc oxide (ZnO), silicon dioxide (SiO2), titanium dioxide (TiO2), and ferric oxide (Fe2O3) on the morphology and physiology of linseed in the presence of sodium chloride (NaCl). Plants responded positively to all the treated NPs and improved the growth, carbon and nutrient assimilation, while salt stress increased the content of proline, hydrogen peroxide and superoxide anion. Application of NPs over the stressed plants further increased the antioxidant enzymatic system and other physiochemical reactions. Results indicate that application of NPs increased the growth and physiology of the plant and also increased the salt tolerance capacity of the plant.


Asunto(s)
Antioxidantes/metabolismo , Lino/fisiología , Nanopartículas/toxicidad , Peróxido de Hidrógeno/farmacología , Nanopartículas/química , Oxidación-Reducción , Fotosíntesis/efectos de los fármacos , Prolina/metabolismo , Salinidad , Estrés Salino , Tolerancia a la Sal , Dióxido de Silicio/toxicidad , Titanio , Óxido de Zinc
10.
Plant Physiol Biochem ; 158: 372-384, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33272793

RESUMEN

Hydrogen sulfide (H2S) is a gasotransmitter and signaling molecule associated with seed germination, plant growth, organogenesis, photosynthesis, stomatal conductance, senescence, and post-harvesting. H2S is produced in plants via both enzymatic and non-enzymatic pathways in different subcellular compartments. Exogenous application of H2S facilitates versatile metabolic processes and antioxidant machinery in plants under normal and environmental stresses. This compound interacts with phytohormones like auxins, abscisic acid, gibberellins, ethylene, jasmonic acid, and salicylic acid. Furthermore, H2S participates in signal transductions of other signaling molecules like nitric oxide, carbon monoxide, calcium, methylglyoxal, and hydrogen peroxide. It also mediates post-translational modification, which is a protective mechanism against oxidative damage of proteins. This review summarizes the roles of H2S as intriguing molecule in plants.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Plantas/química , Gases , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/fisiología
11.
Plant Physiol Biochem ; 156: 64-77, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32906023

RESUMEN

Salinity is one of the major threats to sustainable agriculture that globally decreases plant production by impairing various physiological, biochemical, and molecular function. In particular, salinity hampers germination, growth, photosynthesis, transpiration, and stomatal conductance. Salinity decreases leaf water potential and turgor pressure and generates osmotic stress. Salinity enhances reactive oxygen species (ROS) content in the plant cell as a result of ion toxicity and disturbs ion homeostasis. Thus, it imbalances nutrient uptake, disintegrates membrane, and various ultrastructure. Consequently, salinity leads to osmotic and ionic stress. Plants respond to salinity by modulating various morpho-physiological, anatomical, and biochemical traits by regulating ion homeostasis and compartmentalization, antioxidant machinery, and biosynthesis of osmoprotectants and phytohormones, i. e, auxins, abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellins, salicylic acid, jasmonic acid, and polyamines. Thus, this further modulates plant osmoticum, decreases ion toxicity, and scavenges ROS. Plants upregulate various genes and proteins that participate in salinity tolerance. They also promote the production of various phytohormones and metabolites that mitigate the toxic effect of salinity. Based on recent papers, the deleterious effect of salinity on plant physiology is discussed. Furthermore, it evaluates the physiological and biochemical responses of the plant to salinity along with phytohormone response. This review paper also highlights omics (genomics, transcriptomics, proteomics, and metabolomics) approach to understand salt stress tolerance.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Plantas/química , Salinidad , Tolerancia a la Sal , Estrés Fisiológico , Fotosíntesis , Reguladores del Crecimiento de las Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...